Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Aerodynamic Development of the New BREZZA and FRONX

2024-04-09
2024-01-2535
MSIL (Maruti Suzuki India Limited), India’s leading carmaker, has various SUVs (Sports Utility Vehicle) in its model lineup. Traditionally, SUVs are considered to have a bold on-road presence and this bold design language often deteriorates aerodynamic drag performance. Over the years, the demand for this segment has significantly grown, whereas the CAFE (Corporate Average Fuel Economy) norms have become more stringent. To cater this growing market demand, MSIL planned for two new SUVs: (1) New BREZZA - A bolder design with similar targeted aerodynamic performance compared to its predecessor (BREZZA-2016) and (2) FRONX - A new cross-over SUV vehicle targeted best-in-class aerodynamic performance in this category at MSIL. This paper illustrates the aerodynamic development process for these two SUVs using CFD (Computational Fluid Dynamics) and full scale WTT (Wind Tunnel Test).
Technical Paper

Numerical Simulation of Fluctuating Wind Noise of a Vehicle in Reproduced on-Road Wind Condition

2024-04-09
2024-01-2353
In vehicle development, reducing noise is a major concern to ensure passenger comfort. As electric vehicles become more common and engine and vibration noises improve, the aerodynamic noise generated around the vehicle becomes relatively more noticeable. In particular, the fluctuating wind noise, which is affected by turbulence in the atmosphere, gusts of wind, and wake caused by the vehicle in front, can make passengers feel uncomfortable. However, the cause of the fluctuating wind noise has not been fully understood, and a solution has not yet been found. The reason for this is that fluctuating wind noise cannot be quantitatively evaluated using common noise evaluation methods such as FFT and STFT. In addition, previous studies have relied on road tests, which do not provide reproducible conditions due to changing atmospheric conditions. To address this issue, automobile manufacturers are developing devices to generate turbulence in wind tunnels.
Technical Paper

Vibrational Energy Propagation Analysis at Point Joints between Frame and Panel for Vehicle Interior Noise Reduction

2024-04-09
2024-01-2346
This paper analyzes the mechanism of vibrational energy propagation and panel vibration generation at the point joints between frame and panel which can be applied to reduce the vehicle interior noise. In this study, we focused on the traveling wave in the early stage of propagation before the mode is formed and investigated the mechanism of panel vibration generation due to wave energy propagation and its reduction method. First, we show theoretically that the out-of-plane component of the transmitted power at the point joint between frame and panel that contributes to panel vibration is associated with frame deformation. Then, we show through numerical verification that panel vibration can be reduced by reducing the transmitted power of the out-of-plane component and explain the effectiveness of the frame-to-panel joint design guidelines based on energy propagation analysis. Next, this analysis method was applied to the vehicle body FEM model.
Technical Paper

Material Modelling of Lamination Stack in Electric Machines

2024-04-09
2024-01-2745
The rotor and stator of electric motors consist of multiple materials, of which steel forms the majority of mass and volume. Steel in electric motors is commonly in the form of thin sheets (laminations), stacked along the axis of the rotor. The structural integrity of such a stack can be ensured using bolting, welding or bonding of the laminations. Predictive mechanical finite element simulations of these laminated stacks can become computationally intense because the steel sheets are thin, and the motor often contains hundreds of them. If the laminations are modelled individually, the size of the elements is very small compared to the overall dimensions and the interface between the laminations need to be modelled as well. In this paper, we present an alternate method of modelling this laminated stack as a single solid body using homogeneous and orthotropic material property, instead of representing each lamination.
Technical Paper

NHTSA’s Evaluation of Glazing Performance Testing

2024-04-09
2024-01-2491
FMVSS No. 205, “Glazing Materials,” uses impact test methods specified in ANSI/SAE Z26.1-1996. NHTSA’s Vehicle Research and Test Center initiated research to evaluate a subset of test methods from ANSI Z26.1-1996 including the 227 gram ball and shot bag impact tests, and the fracture test. Additional research was completed to learn about potential changes to tempered glass strength due to the ceramic paint area (CPA), and to compare the performance of twelve by twelve inch flat samples and full-size production parts. Glass evaluated included tempered rear quarter, sunroof, and backlight glazing. Samples with a paint edge were compared to samples without paint, and to production parts with and without paint in equivalent impact tests. A modified shot bag with stiffened sidewalls was compared to the ANSI standard shot bag. The fracture test comparison included evaluating the ANSI Z26.1 impact location and ECE R43 impact location.
Technical Paper

Virtual Evaluation of PM Rotor Failure Modes and Magnet Adhesive Debonding with Cohesive Interface Approach

2024-04-09
2024-01-2725
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements gives rise to the need for increased efficiency and power density of the motors in the Electric Drive Unit (EDU). Internal Permanent Magnet (IPM) motor is one of the best suited options in such scenarios because of its primary advantages of higher efficiency and precise control over torque and speed. In the IPM motor, permanent magnets are mounted within the rotor body to produce a resultant rotating magnetic field with the 3-phase AC current supply in the stator. IPM configuration provides structural integrity and high dynamic performance as the magnets are inserted within the rotor body. Adhesive glue is used to install the magnets within the laminated stack of rotor.
Technical Paper

Optimal PWM Schemes in Wound Rotor Synchronous Machines and IPM Synchronous Machines for Maximum System Efficiency: A Comparative Study

2024-04-09
2024-01-2204
Wound rotor synchronous machines (WRSM) without rare-earth magnets are becoming more popular for traction applications, but their potential in drive performance has not yet been fully explored. This paper presents a Pulse Width Modulation (PWM) scheme optimization procedure to minimize motor and inverter losses. It leverages different PWM schemes with different PWM switching strategies and switching frequencies. First, a generic PWM-induced motor loss calculation tool developed by BorgWarner is introduced. This tool iteratively calculates motor losses with PWM inputs across the entire operating map, significantly improving motor loss prediction accuracy. The inverter losses are then calculated analytically using motor and wide-bandgap (WBG) switching device characteristics. By quantifying these various scenarios, the optimal PWM scheme for achieving the best system efficiency across the entire operating map is obtained.
Technical Paper

A Method for Calculating Frontal A and B Stiffness Coefficients from NCAP Barrier Crash Tests Accounting for Bumper Cover Air Gap

2024-04-09
2024-01-2473
A and B stiffness coefficients to model the frontal stiffness of vehicles is a commonly used and accepted technique within the field of collision reconstruction. Methods for calculating stiffness coefficients rely upon examining the residual crush of a vehicle involved in a crash test. When vehicles are involved in a collision, portions of the crushed vehicle structures rebound from their maximum dynamic crush position. Once the vehicle structures have finished rebounding, the remaining damage is called the residual crush. A problem can arise when the plastic bumper cover rebounds more than the vehicle's structural components, resulting in an air gap between the structural components and the plastic bumper cover. Most modern New Car Assessment Program (NCAP) tests quantify crush in the test reports based on the deformed location of the plastic bumper cover and not the structural components behind the plastic bumper cover. This results in an underreporting of the actual residual crush.
Technical Paper

Electric Motor Noise and Vibration Improved Method Based on Rotor Load

2024-03-26
2024-01-5038
This article presents a method for improving electric motor noise and vibration analysis based on rotor load. The method first obtains two key parameters, namely the characteristics of the stator and rotor core material and the connection stiffness between the rotor skewed poles, through modal testing and simulation calibration of the stator and rotor. Subsequently, the electromagnetic simulation is used to calculate the torque fluctuation of each segment of the rotor skewed poles, which is used as input load for the structural simulation. The vibration of the suspension point and the radiation noise of the transmission housing are then calculated under the action of torque fluctuation. The study highlights the significant contribution of the rotor torsional mode to noise and vibration.
Technical Paper

Amplitude Method for Detecting Debonding in Stack Bond Adhesive

2024-03-13
2024-01-5033
Adhesively bonded joints have been applied in the automotive industry for the past few decades due to their advantages such as higher fatigue resistance, light weight, capability of joining dissimilar materials, good energy absorption, and high torsional stiffness for overall body structure. They also provide an effective seal against noise and vibration at a low cost. There exists the challenge of defining the fatigue characteristics of adhesive joints under cyclic loading conditions, and conventional methods have limitations in detecting the crack initiation of a bonded joint. This study introduces a method of detecting crack initiation by using the frequency method. It is found that stiffness change in the system is highly correlated to change in natural frequencies. By monitoring the change in natural frequencies, the crack initiation can be detected.
Technical Paper

Side Mirror Soiling Investigation through the Characterization of Water Droplet Formation and Size behind a Generic Plate

2024-02-27
2024-01-5030
The improvement of vehicle soiling behavior has increasing interest over the past few years not only to satisfy customer requirements and ensure a good visibility of the surrounding traffic but also for autonomous vehicles, for which soiling investigation and improvement are even more important due to the demands of the cleanliness and induced functionality of the corresponding sensors. The main task is the improvement of the soiling behavior, i.e., reduction or even prevention of soiling of specific surfaces, for example, windows, mirrors, and sensors. This is mostly done in late stages of vehicle development and performed by experiments, e.g., wind tunnel tests, which are supplemented by simulation at an early development stage. Among other sources, the foreign soiling on the side mirror and the side window depend on the droplet detaching from the side mirror housing.
Technical Paper

Impact of Notch Design on the Energy Absorption Characteristics of Aluminium Magnesium 5456 Tube under Axial Impact Load

2024-02-23
2023-01-5122
Over the years the vehicle population has drastically grown which increases the number of road accidents. The accident severity caused fatality and disability being reduced by introducing energy absorption materials (Crash tube). Over the years, researchers have used aluminium, magnesium, and titanium crash tubes to enhance the energy absorption characteristics during different crash scenarios. However crash tube will possess sufficient rigidity to absorb the impact force during collision but it is still challenging to identify the right material. At the same time, this paper aims to examine the energy absorption characteristics of Aluminium-Magnesium hybrid material (Al-Mg 5456) crash tube designs. Three designs were considered square, cylindrical, and hexagonal designs along with different notch designs to minimize the weight percentage of tubes. The LSDYNA results the oval notches performed better in energy absorption when compared to other designs.
Technical Paper

Enhancement of Polycrystalline Silicon Solar Cell’s Efficiency through Electrospinning Coating Using Erbium Oxide

2024-02-23
2023-01-5163
The current research focuses on enhancing the performance of Si solar cells by using Er2O3 (Erbium Oxide) in cubic crystalline nature serves as an anti-reflection coating material. An anti-reflective coating aims to improve the Efficient Power Conversion (EPC) of polycrystalline silicon wafers solar cells (PSSC) utilised in solar roof panels of the automotive sector. It also exhibits superior light transmittance and least light reflectance, which eventually leads to the increase EPC. Erbium oxide helps to convert low energy photons into high energy photons. The incident photons, which lies on the solar cell, gradually losses its energy to travel in a denser medium and dissipate in the form of heat energy. In order to overcome the rate of reflection, current research aims in synthesis of erbium oxide nanosheets using electrospinning deposition technique for varying deposition timings such as 1, 1.5 and 2 hours.
Technical Paper

Analyzing the Moisture and Chemical Retention Behavior of Flax Fiber–Ceramic Hybrid Composites for Automotive Underbody Shields

2024-01-22
2024-01-5006
In pursuing enhanced bio-composite properties, filler materials play a pivotal role. This study delves into the impact of ceramic additives on the chemical resistance and moisture durability of flax fiber-reinforced polymers. Utilizing the hand lay-up technique, we developed polyester composites reinforced with flax fibers. Silicon carbide (SiC) and aluminum oxide (Al2O3) were chosen as filler components. One batch of flax fibers underwent an alkaline treatment to enhance their properties further using a 5% NaOH solution. The resistance of composite samples to acetic acid and sodium hydroxide was then assessed. Additionally, the moisture absorption patterns of all models were investigated. A thorough comparative analysis was conducted among multiple composite batches. The results highlighted that integrating additives significantly bolstered the chemical and moisture resistance of the composites.
Technical Paper

Cab RLDA Using VI & MI Approach: A Co-Simulation of ADAMS/Acar & FEMFAT Lab VI/MI

2024-01-16
2024-26-0051
The current approach of hybrid RLDA is typically incapable of providing accurate dynamic loads coming on cab at chassis-to-cab load transfer locations, primarily due to the following two reasons. Firstly, all of the model parameters of the vehicle, which is put on the 4-post, are not known. Secondly, MBS (Multi-body System) Cab model is multi degree of freedom with rigid bodies, flex bodies, contacts and non-linear force elements. Therefore, if the system identification is to be performed manually it becomes an arduous and humanly impossible task. Towards generating accurate dynamic loads on cab, an approach using FEMFAT LAB - VI & MI has been developed which involves a two-step process: a) Generating MBS excitation by back calculating from measured frame response – VI (Virtual iterations). b) Fine tuning modelling parameters to match measured cab response – MI (Model Improvement).
Technical Paper

Measurement Uncertainty and Its Influence on E-Drive Optimization Applications

2024-01-16
2024-26-0097
This paper gives insights in the theoretical measurement uncertainty of E-Drive rotor position dependent results, like Id and Iq calculations, done by a modern propulsion power analyzer (PA). The calculation of Id and Iqis fundamental to perform control optimization and application tasks for an E-Drive system. To optimize the E-Drive system application towards e.g., best efficiency, best performance, or improved NVH the importance of the testing toolchain is described: a power analyzer delivering the required results, an automation system, and a Design of Experiment tool to set improved target values. Consequently, inverters applications featuring field-oriented control (FOC) with permanent magnet synchronous machines (PMSM) are updated with a chosen control strategy. For achieving a certain behavior of an E-Drive, different degrees of freedom in the Inverter Control Unit are available; Lookup tables Id and Iq represent two fundamental application labels to be considered.
Technical Paper

New Pass-by Noise Regulatory Norms IS 3028:2023 (Part 2) - an Analysis of Acceleration and Noise Source Contribution

2024-01-16
2024-26-0199
Worldwide automotive sector regulatory norms have changed and become more stringent and complex to control environmental noise and air pollution. To continue this trend, the Indian Ministry of Road Transport is going to impose new vehicle exterior pass-by noise regulatory norms IS 3028:2023 (Part2) to control urban area noise pollution. This paper studies the synthesis of M1 category vehicle driving acceleration, dominant noise source, and frequency contribution in exterior PBN level. A vehicle acceleration analysis study was carried out to achieve an optimized pass by noise (PBN) level based on the vehicle’s PMR ratio, reference, and measured test acceleration data. Based on the analysis, test gear strategy was decided to achieve a lower PBN level. This strategy involved increasing the effective final drive ratio and optimizing engine calibration, resulting in improvement with acceleration in the ith gear.
Technical Paper

Bi-Directional Adjustable Holder for LiDAR Sensor

2024-01-16
2024-26-0024
LiDAR stands for Light Detection and Ranging. It works on the principle of reflection of light. LiDAR is one among the other sensors like RADAR and Camera to help achieve a higher level (Level 3 & above) of Autonomous driving capabilities. LiDAR, as a sensor, is used to perceive the environment in 3D by calculating the ‘Time of flight’ of the Laser beam transmitted from LiDAR and the rays reflected from the Object, along with the intensity of reflection from the object. The frame of perception is plotted as a point cloud. LiDAR is integrated in front of the vehicle, precisely in the grill of the car having a high vantage point to perceive the environment to extract the best possible sensor performance. LiDAR sensor needs to be held within the front panel cutout with uniform gap and flush condition.
Technical Paper

Integration of Seat-Belt Web-Guide Functionality in Trim Part

2024-01-16
2024-26-0018
Restraint systems in automotives are inevitable for the safety of passengers. Seat belts are one such restraint system in automotives that prevent drivers and passengers from being injured during a crash by restraining them back. Seatbelt on automotives has interface with Body-in-white (henceforth called as BIW) and Trim parts in-order to serve its purpose at vehicle level. One such interface part of seat belt is the web guide, which assists and ensures the nylon web’s smooth motion at different seat track positions. Web-guides on automotives ensure the flawless motion of seat belt web at pillar trim areas. In this paper, we are discussing alternate ways of assisting the seat belt web without the web-guide as a separate part. In-order to assist and ensure the motion of nylon web in its trajectory, we have extended the flange of the pillar trim involved.
Technical Paper

Numerical Modelling of Stone Lofting by a Treaded Tyre

2024-01-16
2024-26-0270
In passenger cars, exterior damage due to external objects is a common and repetitive problem for the costumer. A vehicle running over an unpaved or granular road undergoes such damages where the tyre picks up stones (Figure 1) [1] and ejects them towards the vehicle exterior surfaces. These stones cause mechanical damage to the vehicle: affecting aesthetics, accelerating corrosion, and reducing safety. This mechanical damage is more severe in case of electrical vehicles as batteries are placed at the underside of the vehicle. Figure 2 [2] shows an example damaged caused by stone chipping. Induced erosion due to chipping cause corrosion propagation on the peeled surface, Figure 2 shows an example of such corrosion. So far, physical testing and analytical mathematical methods are the most common ways to evaluate damages. However, there is a need of computationally inexpensive, repeatable, and accurate method, which can account for the complex system.
X